从平常数学概念的教学实际来看,学生往往会出现两种倾向,其一是有的学生认为基本概念单调乏味,不去重视它,不求甚解,导致概念认识和理解模糊;其二是有的学生对基本概念虽然重视但只是死记硬背,而不去真正透彻理解,只有机械的、零碎的认识。这样久而久之,从而严重影响对数学基础知识和基本技能的掌握和运用。比如有同学认为F(x)=x2(x∈[-1,2])是偶函数,有的同学在解题中得到直线的倾斜角为负角,有的同学认为函数y=f(x)与直线x=a有两个交点,这些错误都是由于学生对概念认识模糊造成的。只有真正掌握了数学中的基本概念,我们才能把握数学的知识系统,才能有正确、合理、迅速地进行运算,论证和空间想象。从一定意义上说,数学水平的高低,取决于对数学概念掌握的程度。
    如何设计数学概念教学,如何在概念教学中有效地培养和开发学生的思维品质,是我们在教学中经常遇到并必须解决的问题.本文试图以“两条异面直线所成的角”一课的教学设计为例,谈谈概念教学中各个阶段上培养思维能力,优化思维品质的一点粗浅体会.
    5.运用新概念,培养思维的深刻性。思维的深刻性主要表现在理解能力强,能抓住概念、定理的核心及知识的内在联系,准确地掌握概念的内涵及使用的条件和范围.在用概念判别命题的真伪时,能抓住问题的实质;在用概念解题时,能抓住问题的关键.巩固深化阶段:在学生深刻理解数学概念之后,应立即引导学生运用所学概念解决“引入概念”时提出的问题(或其他问题),在运用中巩固概念.使学生认识到数学概念,既是进一步学习数学理论基础,又是进行再认识的工具.如此往复,使学生的学习过程,成为实践?认识?再实践?再认识的过程,达到培养思维深刻性的目的.6.分析错解成因,培养思维的批判性。思维的批判是指思维严谨而不疏漏,能准确地辨别和判断,善于觅错、纠错,以批判的眼光观察事物和审视思维的活动.深化阶段:对数学概念的理解要防止片面性.除在运用概念时,用典型的例子从正面加深对概念的理解、巩固概念之外,还应针对?某些概念的定义中有些关键性的字眼不易被学生所理解,容易被忽视;某些概念的条件比较多,学生常顾此失彼,不易全面掌握;某些概念与它的邻近概念相似,不易区别;等等??举反例,从反面来加深学生对概念的内涵与外延的理解,培养思维的批判性.
    对不同概念的教学,在采用不同的教学方法和模式上下工夫。概念教学主要是要完成概念的形成和概念的同化这两个环节。新知识的概念是学生初次接触或较难理解的,所以在教学时应先列举大量具体的例子,从学生实际经验的肯定例证中,归纳出这一类事物的特征,并与已有的概念加以区别和联系,形成对这一特性的一种陈述性的定义,这就是形成一种概念的过程。在这一过程中同时要做到与学生认知结构中原有概念相互联系、作用,从而领会新概念的本质属性,获得新概念,这就是概念的同化。在进行数学概念教学时,最能有效促进学生创新能力的主要是对实例的归纳及辨析。通过对实例的归纳和辨析对新问题的特性形成陈述性的理解,继而与原有的知识结构相互联系,完成概念形成的两个步骤。

       数学是由概念与命题等内容组成的知识体系。它是一门以抽象思维为主的学科,而概念又是这种思维的语言。因此概念教学是中学数学中至关重要的一项内容,是基础知识和基本技能教学的核心,正确理解概念是学好数学的基础,学好概念是学好数学最重要的一环。一些学生数学之所以差,概念不清往往是最直接的原因,特别是象我校这样职业中学的学生,数学素养差的关键是在对数学概念的理解、应用和转化等方面的差异。因此抓好概念教学是提高中学数学教学质量的带有根本性意义的一环。教学过程中如果能够充分考虑到这一因素,抓住有限的概念教学的契机,以提高大多数学生的数学素养是完全可以做到的,同时,数学素养的提高也为学生的各项能力和素质的培养提供了有利条件以及必要保障。
    二、针对概念的特点采用灵活的教学方法
    一、展示概念背景,培养思维的主动性,思维的主动性,表现为学生对数学充满热情,以学习数学为乐趣,在获得知识时有一种惬意的满足感.(正方体为例观察异面直线)
    揭示了异面直线所成的角出现的背景,将数学家的思维活动暴露给学生,使学生沉浸于对新知识的期盼、探求的情境之中,积极的思维活动得以触发.2.创设求知情境,培养思维的敏捷性思维的敏捷性表现在思考问题时,以敏锐地感知,迅速提取有效信息,进行“由此思彼”的联想,果断、简捷地解决问题.(如何刻划两异面直线的相对位置呢?角和距离?揭示课题.)3.精确表述概念,培养思维的准确性思维的准确性是指思维符合逻辑,判断准确,概念清晰。新概念的引进解决了导引中提出的问题.学生自己参与形成和表述概念的过程培养了抽象概括能力.(用相交直线的夹角刻划异面直线的夹角)4.解剖新概念,培养思维的缜密性思维的缜密性表现在抓住概念的本质特征,对概念的内涵与外延的关系全面深刻地理解,对数学知识结构的严密性和科学性能够充分认识.(两异面直线所成角的概念完全建立),在这个过程中渗透了把空间问题转化为平面问题这一化归的数学思想方法.